skip to main content


Search for: All records

Creators/Authors contains: "Varghese, S. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    We present observations of 86 meteor radio afterglows (MRAs) using the new broadband imager at the Long Wavelength Array Sevilleta (LWA‐SV) station. The MRAs were detected using the all‐sky images with a bandwidth up to 20 MHz. We fit the spectra with both a power law and a log‐normal function. When fit with a power law, the spectra varied from flat to steep and the derived spectral index distribution from the fit peaked at −1.73. When fit with a log‐normal function, the spectra exhibits turnovers at frequencies between 30 and 40 MHz, and appear to be a better functional fit to the spectra. We compared the spectral parameters from the two fitting methods with the physical properties of MRAs. We observe a weak correlation between the log‐normal turnover frequency and the altitude of MRAs. The spectral indices from the power law fit do not show any strong correlations with the physical properties of MRAs. However, the full width half maximum (FWHM) duration of MRAs is correlated with the local time, incidence angle, luminosity and optically derived kinetic energy of parent meteoroid. Also, the average luminosity of MRAs seems to be correlated with the kinetic energy of parent meteoroid and the altitude at which they occur.

     
    more » « less
  3. Abstract

    This paper presents the first observed association between meteor radio afterglows (MRAs) and persistent trains (PTs) and provides the first evidence of a link between these two phenomena. Coobservations of four meteor trails (trains) from the Long Wavelength Array (LWA) telescopes in New Mexico and the Widefield Persistent Train (WiPT) camera associate the long‐lasting (tens of seconds), self‐generated radio emission known as MRAs with the long‐lasting (tens of minutes) optical emissions known as PTs. Each of the four MRAs presented in this paper were spatially and temporally coincident with a PT. In one case, the MRA follows a relatively small (400 m × 400 m) noticeably bright region (knot) of emission within the PT, whereas the other three cases were associated with broader regions of PT activity. As PTs are thought to be driven by exothermic chemical reactions between atmospheric oxygen and ablation products, we show that the same reactions, specifically those involving anions, may produce the necessary suprathermal electrons to power MRAs. We show that only one part in1010of the available power needs to be converted to radio emission in order to produce a typical MRA.

     
    more » « less